M1. (a) decreases
number of shells increases/ shielding increases /atomic size increases
weaker attraction (by nucleus) on bonding electrons / weaker attraction (by nucleus)
on electron pair in a covalent bond
(b) (i) increases
(ii) concentrated sulphuric acid
(c) white ppt
soluble in ammonia
cream ppt
partially soluble /insoluble in ammonia
1
(d) $\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}$
bleach
disinfectant/steriliser/kills bacteria

M2. (a) (i) HNO_{3} or $\mathrm{CH}_{3} \mathrm{COOH}$ (1)
CE in (a) if incorrect acid given
(ii) $2 \mathrm{HNO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (1)

OR $2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Not $\mathrm{H}_{2} \mathrm{CO}_{3}$
(b) (i) I^{-}or At- not elements, atoms or molecules (1)
(ii) F - not elements, atoms or molecules (1)

M3.(a) increases from fluorine to iodine (1)
sizes of molecules increase (1)
(or molecules have more electrons or mass of molecules increases)
QoL mark
Magnitude of intermolecular forces or vdW forces increase (1) (or more vdW forces)
More energy required to separate molecules (or particles) (1)
(or more energy to break intermolecular forces)
or intermolecular forces difficult to break
(b) with NaCl white ppt (1)
soluble in ammonia (1)
note, if ppt clearly refers to wrong substance e.g. NaCl then $\mathrm{C} . E=0$
with NaBr
cream (or off white or biege) ppt (1)
partially soluble (or insoluble) in ammonia (1)
ignore references to conc ammonia
if obviously added silver nitrate mixed with ammonia allow:
NaCl : no change (2)
NaBr : cream ppt (2)
(c) oxidising ability decreases from chlorine to iodine (or down the Group) (1)

$$
\begin{aligned}
& \mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2}(1) \\
& \quad \text { allow use of } \mathrm{NaBr}, \mathrm{HBr} \text { etc }
\end{aligned}
$$

Br_{2} red brown (or yellow or orange) liquid (or solution but not solid) (1)

$$
\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{I}_{2}(1)
$$

allow use of NaBr etc, penalise HI once only
I_{2} brown solution / black solid (1)
do not allow any reference to purple
$\mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Br}^{-}+\mathrm{I}_{2}(1)$
Yellow/orange/red-brown/brown solution goes brown/darker brown solution/black solid (1)

M4. (a) decreases;
increase in shielding ;
(or atomic radius)
less attraction for bonding (or shared) electrons;
(b) brown solution;
(or black solid)
$\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$;
(c) $\quad \mathrm{SO}_{2}$;

$$
\mathrm{SO}_{4}^{2+}+4 \mathrm{H}^{+} 2 \mathrm{e}^{-} \rightarrow \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

S (also $\mathrm{H}_{2} \mathrm{~S}$);

$$
\mathrm{SO}_{4}^{2-}+8 \mathrm{H}^{+} 6 \mathrm{e}^{-} \rightarrow \mathrm{S}+4 \mathrm{H}_{2} \mathrm{O}\left(\text { orSO} \mathrm{O}_{4}^{2-}+10 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}\right)
$$

(d) $\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}$;
sodium chloride;
-1 ;
sodium chlorate(I) (or bleach etc);
+1 ;

M5.(a) Increase

Van der Waal's forces between molecules

Increase with size (or M_{r} or surface area etc)

More energy needed to break (overcome) these forces
(Note max 2 from last three marks if no mention of molecules or 'molecular')
(b) (i) Brown solution (or yellow or orange)

$$
\mathrm{Cl}_{2}+2 \mathrm{Br} \rightarrow 2 \mathrm{C} 1^{-}+\mathrm{Br}_{2}
$$

(ii) cream precipitate
$\mathrm{Br}+\mathrm{Ag}^{+} \rightarrow \mathrm{AgBr}$

Precipitate dissolves
(iii) orange (brown) fumes (gas), White fumes (or misty fumes),
choking gas (any 2)
(c) $2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{Br} \rightarrow \mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{SO}_{2}\right.$ and $\mathrm{Br}_{2}(1)$, equation (1))

